ไฟฟ้ากระแสสลับ




ไฟฟ้าคืออะไร
         อุปกรณ์ไฟฟ้าที่อยู่รอบๆ ตัวเรา ไม่ว่าจะเป็น อุปกรณ์ไฟฟ้าที่ใช้ภายในบ้าน อุปกรณ์สำนักงาน ตลอดจนเครื่องมือ เครื่องจักรในโรงงานอุตสาหกรรม ล้วนแต่ต้องอาศัยพลังงานจากไฟฟ้าทั้งสิ้น ดังนั้น เราควรมาทำความเข้าใจ เกี่ยวกับไฟฟ้าให้มากยิ่งขึ้น คำถามแรกที่ต้องค้นหาคำตอบ ก็คือ "ไฟฟ้าเกิดขึ้นได้อย่างไร"

         วัตถุ ประกอบด้วยอะตอมจำนวนมาก แล้ว "อะตอมคืออะไร" คำถามนี้ต้องเกิดขึ้นแน่นอน ดังนั้นจะขออธิบายสั้นๆ ว่า อะตอมเป็นอนุภาคที่มีขนาดเล็กมากๆ เส้นผ่าศูนย์กลางประมาณ หนึ่งในร้อยล้านเซนติเมตร อะตอมประกอบด้วยนิวเคลียสและอิเล็กตรอน โดยอิเล็กตรอนโคจรรอบนิวเคลียส จำนวนอิเล็กตรอนของอะตอมแต่ละชนิดจะแตกต่างกัน จึงทำให้คุณสมบัติของอะตอมนั้นๆ แตกต่างกันไปด้วย


  ภายในนิวเคลียสของอะตอมประกอบด้วยโปรตอนและนิวตรอน จำนวนโปรตอนจะเท่ากับจำนวนของอิเล็กตรอน ทั้งอิเล็กตรอนและโปรตอนเป็นอนุภาคที่มีไฟฟ้า อิเล็กตรอนมีไฟฟ้าลบและปริมาณไฟฟ้าลบของอิเล็กตรอนของอะตอมใดๆ จะมีขนาดเท่ากันหมด ส่วนโปรตอนมีไฟฟ้าบวกและปริมาณไฟฟ้าบวกของโปรตอน 1 ตัวจะเท่ากับปริมาณไฟฟ้าลบของอิเล็กตรอน 1 ตัว
อิเล็กตรอนหมุนรอบนิวเคลียสของอะตอมด้วยวงจรที่แน่นอน เป็นเพราะมีแรงดึงดูดระหว่างไฟฟ้าบวกของโปรตอนและไฟฟ้าลบของอิเล็กตรอน ด้วยแรงดึงดูดนี้เองที่ทำให้อิเล็กตรอนติดอยู่กับอะตอม อิเล็กตรอนจึงหลุดไปจากอะตอมไม่ได้ แต่อิเล็กตรอนตัวที่อยู่วงโคจรนอกสุดซึ่งห่างจากนิวเคลียสมากมีแรงดึงดูดน้อย เมื่อมีอิทธิพลจากภายนอกเข้ามารบกวน อิเล็กตรอนจึงหลุดพ้นจากวงโคจรนั้นได้ และสามารถเคลื่อนไหวอย่างอิสระระหว่างอะตอมได้ ซึ่งทำให้เกิดปรากฏการณ์ต่างๆ ทางไฟฟ้า วัตถุใดที่มีอิเล็กตรอนอิสระจำนวนมาก จะมีคุณสมบัติเป็นตัวนำไฟฟ้า แต่ถ้ามีจำนวนน้อยจะมีคุณสมบัติเป็นฉนวนไฟฟ้า     
          วัตถุทุกชนิดประกอบด้วยอะตอมที่มีไฟฟ้า ดังนั้น วัตถุทุกชนิดควรมีไฟฟ้าด้วย ภายในอะตอมของวัตถุนั้นมีปริมาณไฟฟ้าบวกและลบเท่ากัน แรงกระทำจากไฟฟ้าบวกและไฟฟ้าลบจึงหักล้างกันพอดี สภาพเช่นนี้เรียกว่า สภาพเป็นกลางทางไฟฟ้า (ทั้งไฟฟ้าบวกและไฟฟ้าลบยังคงมีอยู่ในจำนวนที่เท่ากัน)


เหตุการณ์ที่แสดงให้เห็นชัดเจนว่าวัตถุมีไฟฟ้า คือ การเกิดไฟฟ้าสถิตย์ เช่น เมื่อเรานำวัตถุ
สองชนิดมาถูกัน จะเกิดไฟฟ้าสถิตย์ขึ้น อธิบายได้ว่า อิเล็กตรอนอิสระที่อยู่ภาย
ในวัตถุชนิดหนึ่งเคลื่อนไหวรุนแรงมากขึ้น จนสามารถหลุดพ้นจากแรงยึดเหนี่ยว
ของนิวเคลียสของอะตอมและกระโดดไปอยู่ในวัตถุอีกชนิดหนึ่ง
อิเล็กตรอนในวัตถุชนิดแรกมีจำนวนลดลง จึงแสดงความเป็นไฟฟ้าบวกออกมา
ในขณะเดียวกันวัตถุที่ได้รับอิเล็กตรอนอิสระจะทำให้มีไฟฟ้าลบมากกว่า จึงแสดงความเป็นไฟฟ้าลบออกมา

โดยทั่วไป การที่วัตถุเกิดไฟฟ้าขึ้นเรียกว่า วัตถุนั้นมีประจุไฟฟ้า ประจุไฟฟ้ามีทั้งประจุบวก และประจุลบ ประจุไฟฟ้าแสดงถึงปริมาณไฟฟ้า มีหน่วยเป็น คูลอมบ์ (Coulomb)

ไฟฟ้ากระแสตรง




  เครื่องกำเนิดไฟฟ้ากระแสตรง หลักการของเครื่องกำเนิดไฟฟ้ากระแสตรง อาศัยหลักการ ที่ตัวนำเคลื่อนที่ตัดสนามแม่เหล็ก จะเกิดแรงเคลื่อนที่ไฟฟ้าขึ้นในลวดตัวนำนั้น


โครงสร้างของเครื่องกำเนิดไฟฟ้ากระแสตรง มีดังนี้
ก. ส่วนที่อยู่กับที่ ประกอบด้วย โครงและขั้วแม่เหล็ก ส่วนนี้สร้างสนามแม่เหล็กหรือ
เส้นแรงแม่เหล็กและส่วนที่รับกระแสไฟออก


ข. ส่วนที่เคลื่อนที่ หรือส่วนที่หมุนเรียกว่า อาร์มาเจอร์ (Armature)
....ประกอบด้วย 1. แกนเพลา 2. แกนเหล็ก 3. คอมมิวเตเตอร์




ไฟฟ้ากระแส ไฟฟ้ากระแส เป็นไฟฟ้าที่ใช้อยู่ในบ้านพักอาศัย และในโรงงานอุตสาหกรรมทั่วไป ไฟฟ้ากระแสสามารถแบ่งได้ 2 ชนิดคือ
1) ไฟฟ้ากระแสตรง (Direct Current) ไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสที่มีทิศทางการเคลื่อนที่ของกระแสไฟฟ้า
ไปในทิศทางเดียวกันเป็นวงจร เช่น กระแสไฟฟ้าจากแบตเตอรี่ (Battery) ถ่านไฟฉายเซลล์สุริยะ ไดนาโมกระแสตรง เป็นต้น




ไฟฟ้ากระแสสลับ


    ไฟฟ้ากระแสสลับ (Alternating Current) เป็นไฟฟ้ากระแสที่มีทิศทางการเคลื่อนที่สลับกัน โดยกระแสไฟฟ้าที่เกิดขึ้น
ในขดลวดตัวนำของเครื่องกำเนิดไฟฟ้ากระแสสลับ ซึ่งมีอยู่ 3 ชนิดคือ ไฟฟ้ากระแสสลับ เฟสเดียว สองเฟส และสามเฟส ในปัจจุบันนิยมใช้เพียง 2 ชนิดเท่านั้น คือ กระแสไฟฟ้าสลับเฟสเดียวกับสามเฟส
ก. ไฟฟ้ากระแสสลับเฟสเดียว (Single Phase)





   ลักษณะการเกิดไฟฟ้ากระแสสลับ คือ ขดลวดชุดเดียวหมุนตัดเส้นแรงแม่เหล็ก เกิดแรงดันกระแสไฟฟ้า
ทำให้กระแสไหลไปยังวงจรภายนอก โดยผ่านวงแหวน และแปลงถ่านดังกล่าวมาแล้ว จะเห็นได้ว่าเมื่อออกแรงหมุน
ลวดตัวนำได้ 1 รอบ จะได้กระแสไฟฟ้าชุดเดียวเท่านั้น ถ้าต้องการให้ได้ปริมาณกระแสไฟฟ้าเพิ่มขึ้น ก็ต้องใช้ลวด
ตัวนำหลายชุดไว้บนแกนที่หมุน ดังนั้นในการออกแบบขดลวดของเครื่องกำเนิดไฟฟ้ากระแสสลับถ้าหากออกแบบ
ชุดขดลวดบนแกนให้เพิ่มขึ้นอีก 1 ชุด แล้วจะได้กำลังไฟฟ้าเพิ่มขึ้น
ข. ไฟฟ้ากระแสสลับสามเฟส (Three Phase) เป็นการพัฒนามาจากเครื่องกำเนิดไฟฟ้ากระแสสลับชนิดสองเฟส โดยการออกแบบจัดวาง
ขดลวดบนแกนที่หมุนของเครื่องกำเนิดนั้น เป็น 3 ชุด ซึ่งแต่ละชุดนั้นวางห่างกัน 120 องศาทางไฟฟ้า




ไฟฟ้ากระแสสลับที่ใช้ในบ้านพักอาศัย ส่วนใหญ่ใช้ไฟฟ้ากระแสสลับเฟสเดียว (SinglePhase)ระบบการส่งไฟฟ้าจะใช้
สายไฟฟ้า 2 สายคือ สายไฟฟ้า 1 เส้น และสายศูนย์ (นิวทรอล) หรือเราเรียกกันว่า สายดินอีก 1 สาย สำหรับบ้านพักอาศัยในเมืองบางแห่ง
อาจจะใช้เครื่องใช้ไฟฟ้าชนิดพิเศษ จะต้องใช้ไฟฟ้าชนิดสามเฟส ซึ่งจะให้กำลังมากกว่า เช่น มอเตอร์เครื่องสูบน้ำในการบำบัดน้ำเสีย
ลิฟต์ของอาคารสูง ๆ เป็นต้น


วงจรอนุกรม

         วงจรไฟฟ้า เป็นการนำเอาสายไฟฟ้าหรือตัวนำไฟฟ้าที่เป็นเส้นทางเดินให้กระแสไฟฟ้า
สามารถไหลผ่านต่อถึงกันได้นั้นเราเรียกว่า วงจรไฟฟ้า การเคลื่อนที่ของอิเล็กตรอน
ที่อยู่ภายในวงจรจะเริ่มจากแหล่งจ่ายไฟไปยังอุปกรณ์ไฟฟ้า ดังการแสดงการต่อวงจรไฟฟ้า
เบื้องต้นโดยการต่อแบตเตอรี่ต่อเข้ากับหลอดไฟ หลอดไฟฟ้าสว่างได้เพราะว่ากระแสไฟฟ้
าสามารถไหลได้ตลอดทั้งวงจรไฟฟ้าและเมื่อ
หลอดไฟฟ้าดับก็เพราะว่ากระแสไฟฟ้าไม่สามารถไหลได้ตลอดทั้งวงจร เนื่องจากสวิตซ์เปิดวงจรไฟฟ้าอยู่นั่นเอง



จรอนุกรมหมายถึง การนำเอาอุปกรณ์ทางไฟฟ้ามาต่อกันในลักษณะที่ปลายด้านหนึ่งของอุปกรณ์ตัวที่ 1
ต่อเข้ากับอุปกรณ์ตัวที่ 2 จากนั้นนำปลายที่เหลือของอุปกรณ์ตัวที่ 2 ไปต่อกับอุปกรณ์ตัวที่ 3
และจะต่อลักษณะนี้ไปเรื่อยๆ ซึ่งการต่อแบบนี้จะทำให้กระแสไฟฟ้าไหลไปในทิศทางเดียว
กระแสไฟฟ้าภายในวงจรอนุกรมจะมีค่าเท่ากันทุกๆจุด ค่าความต้านทานรวมของวงจรอนุกรมนั้นคือการนำเอาค่าความต้านทานทั้งหมดนำมารวมกัน
ส่วนแรงดันไฟฟ้าในวงจรอนุกรมนั้นแรงดันจะปรากฎคร่อมตัวต้านทานทุกตัวที่จะมีกระแสไฟฟ้า
ไหลผ่านซึ่งแรงดันไฟฟ้าที่เกิดขึ้นจะมีค่าไม่เท่ากันโดยสามารถคำนวนหาได้จากกฎของโอห์ม



จากรูป
RT = R1 + R2 + R3 + R4 + R5
RT = ค่าความต้านทานรวมหรือค่าความต้านทานทั้งหมด
R1 ค่าความต้านทานตัวที่ 1
R2 ค่าความต้านทานตัวที่ 2
R3 ค่าความต้านทานตัวที่ 3
R4 ค่าความต้านทานตัวที่ 4
R5 ค่าความต้านทานตัวที่ 5
ตัวอย่าง
จากวงจรในรูป จงคำนวนหาค่าความต้านทานรวม




ลักษณะคุณสมบัติของวงจรอนุกรม
1. ในวงจรหรือส่วนใดส่วนหนึ่งของวงจรอนุกรมจะมีกระแสไหลผ่านในทิศทางเดียวเท่านั้น
2. แรงดันตกคร่อมที่ความต้านทานแต่ละตัวในวงจรเมื่อนำมาร่วมกันจะมีค่าเท่ากับ
แรงดันที่จ่ายให้กับวงจร
3. ค่าความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากับค่าความต้านทานรวมกัน
ทั้งหมดในวงจร
4. กำลังและพลังงานไฟฟ้าที่เกิดขึ้นที่ความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากำลังและพลังงานไฟฟ้าทั้งหมดในวงจร


วงจรขนาน
วงจรที่เกิดจากการต่ออุปกรณ์ไฟฟ้าตั้งแต่ 2 ตัวขึ้นไปให้ขนานกับแหล่งจ่ายไฟมีผลทำให้ค่าของแรงดันไฟฟ้า
ที่ตกคร่อมอุปกรณ์ไฟฟ้าแต่ละตัวมีค่าเท่ากัน ส่วนทิศทางการไหลของกระแสไฟฟ้าจะมีตั้งแต่ 2 ทิศทางขึ้นไปตามลักษณะของสาขาของวงจรส่วนค่าความต้านทานรวมภายในวงจรขนานจะมีค่าเท่ากับ
ผลรวมของส่วนกลับของค่าความต้านทานทุกตัวรวมกัน ซึ่งค่าความต้านทานรวมภายในวงจรไฟฟ้าแบบขนานจะมีค่าน้อยกว่าค่าความต้านทานภายในสาขาที่มีค่าน้อย
ที่สุดเสมอ และค่าแรงดันที่ตกคร่อมความต้านทานไฟฟ้าแต่ละตัวจะมีค่าเท่ากับแรงเคลื่อนของแหล่งจ่าย



จากรูป


ตัวอย่าง
จากวงจรในรูป จงคำนวนหาค่าความต้านทาน



สำหรับค่าแรงดันไฟฟ้าในวงจรขนานที่ตกคร่อมตัวต้านทานแต่ละตัวนั้น มีค่าเท่ากับค่าแรงดันไฟฟ้าของแหล่งจ่ายไฟ แรงดันไฟฟ้าที่ตกคร่อมความต้านทานแต่ละตัวซึ่งมีค่าเท่ากับ
VR1 = VR2 = VR3 = VR4 = VS = 9V



กระแสไฟฟ้าภายในวงจรขนานจะมีหลายค่าด้วยกัน ทั้งนี้เนื่องจากทิศทางการไหลของกระแสไฟฟ้ามีมากกว่า 1 ทิศทาง ดังนั้น การคำนวนหาค่ากระแสไฟฟ้าจึงใช้กฎของ Kerchhoff,s Current Law โดยมีวิธีการคำนวนสองวิธีคือ
1. กระแสไฟฟ้ารวมภายในวงจร ( IT ) จะมีค่าเท่ากับผลรวมของกระแสไฟฟ้าที่ไหลแยกในแต่ละทิศทาง ( I1 + I2 + I3 + I4+…..)
2. กระแสไฟฟ้าที่ไหลเข้าสู่จุดๆ หนึ่งจะมีค่าเท่ากับกระแสไฟฟ้าที่ไหลออกจากจุดๆ นั้นเสมอ





ลักษณะคุณสมบัติของวงจรขนาน
1. แรงดันที่ตกคร่อมที่อิลิเมนท์ หรือที่ความต้านทานทุกตัวของวงจรจะมีค่าเท่ากัน
เพราะว่าเป็นแรงดันตัวเดียวกันในจุดเดียวกัน
2. กระแสที่ไหลในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับกระแส
ที่ไหลผ่านวงจรทั้งหมดหรือกระแสรวมของวงจร
3. ค่าความนำไฟฟ้าในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับ
ค่าความนำไฟฟ้าทั้งหมดของวงจร
4. กำลังไฟฟ้าที่เกิดขึ้นที่อิลิเมนท์หรือค่าความต้านทานในแต่ละสาขาในวงจรเมื่อ
นำมาร่วมกันก็จะมีค่าเท่ากับกำลังและพลังงานไฟฟ้าทั้งหมดของวงจร








ไม่มีความคิดเห็น:

แสดงความคิดเห็น